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Abstract—The blocking of line-of-sight between anchors and
targets by distributed (i.e., non-point) obstacles in an environment
can create blind-spots in a localization network if there are an
insufficient number of unblocked anchors. The spatial randomness
of the obstacle and anchor locations makes it difficult to character-
ize the blind-spot probability of a network. In this paper, we use
tools from stochastic geometry to characterize this randomness.
In particular, a homogeneous Poisson point process is used to
model the anchor locations and a germ-grain model is employed
to represent obstacle locations and shapes. Unlike previous works,
which usually assume independent blocking of anchors, we develop
tools to handle correlated blocking. Specifically, we use a mixture
distribution to approximate the variance of the unshadowed area,
which in turn, is used to approximate the blind-spot probability.

Index Terms—Stochastic geometry, Correlated blocking, Blind-
spot probability, Line-of-sight, Localization

I. INTRODUCTION

Radio-frequency based localization is becoming increasingly
ubiquitous due to the wide range of applications using location-
based information. In general, a localization network involves
targets and anchors. For passive targets that only reflect in-
coming signals, time-of-arrival (ToA) based localization is well
suited and can provide accuracies in the sub-centimeter range
[1]. When no directional information is available, line-of-sight
(LoS) between the target and at least three anchors is required
for unambiguous ToA-based localization over a 2D plane1.

In many environments, the LoS path between two points
may be blocked by obstacles such as buildings, furniture etc.
Due to the distributed (i.e. non-point) nature of such obstacles,
the blocking of LoS from the anchors to a particular target
exhibits correlation, in general (e.g., anchors A1 and A2 are
blocked to the target by the same obstacle in Fig. 1). A
target is said to be in a blind-spot if it has LoS to fewer
than three anchors. Ignoring the correlation in LoS blocking
events can result in the blind-spot probability of a localization
network to be underestimated, e.g., if two anchors, situated
close to one another, are each blocked from a target with
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1we assume 2D localization for convenience. The extension to the 3D case

is straightforward.

probability p, then the joint blocking probability for the anchors
is also approximately p > p2. In this paper, we use tools
from stochastic geometry to model correlated blocking and
its effect on blind-spot events. A stochastic geometry analysis
characterizes the performance of a network over an ensemble
of environment realizations, instead of a particular snapshot.
This leads to a better understanding of system behavior while
providing useful design insights. The Poisson point process
(PPP) has been used to analyze the performance of different
localization networks in a number of recent works [2], [3],
[4], while a Boolean model was used to analyze the impact
of blocking on urban cellular network performance in [5].
However, the blocking correlation was ignored in all these
works. The effect of correlated shadowing on the interference
distribution of wireless networks in urban areas was studied in
[6] using a Manhattan line process to model building locations.

The main contributions of this work are:

• We model the anchor locations using a homogeneous PPP
and the obstacle locations and shapes using a germ-grain
model.

• We revisit a known blind-spot probability expression ob-
tained from the independent blocking assumption and
derive the conditions under which it underestimates the
true blind-spot probability.

• We model correlated blocking by using a mixture distri-
bution to approximate the joint blocking probability of
two anchors and use it to compute the first and second
moments of the unshadowed area numerically. Using the
second-order statistics of the unshadowed area, we ap-
proximate the blind-spot probability using a Taylor series
expansion.

II. SYSTEM MODEL

Consider an environment consisting of point targets and
distributed obstacles situated in R2. The i-th obstacle can be
represented by the tuple (ri, φi, Si, ωi), where (ri, φi) ∈ R2

denotes the location of the obstacle in polar coordinates (φi ∈
[0, 2π)), Si ⊆ R2 denotes its shape and ωi its orientation.
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Fig. 1: A localization network consisting of anchors (�) and
obstacles (�) surrounding a target. The distributed obstacles
give rise to correlated blocking. The shadow regions can be
viewed as a germ-grain model, where the germs are the obstacle
mid-points and the grains are the shaded regions.

The collection of obstacles ∪i(ri, φi, Si, ωi) form a germ-grain
model if the following conditions are satisfied [7]:
(i) The set of points {(ri, φi)}, known as germs, form a point

process in R2.
(ii) The set {(Si, ωi)}, known as grains are drawn from a

family of closed sets S × Ω.
The obstacles are assumed to be opaque to radio waves; hence,
it is reasonable to let S be the set of line-segments of length
at most L, where L is the maximum obstacle length. Without
loss of generality, the germs can be chosen to be the mid-points
of the line-segments. We assume the germs to be distributed
according to a homogeneous PPP with intensity λ0 (i.e., the
number of obstacles over a set in R2 with area A is a Poisson
random variable with mean λ0A). Throughout this work, we
assume a worst-case orientation, i.e., all obstacles lengths are
equal to L and ωi = φi + π/2 (Fig. 1). Such an orientation
ensures maximum shadowing.

A localization network comprising of single-antenna an-
chors2 is deployed over R2 and we assume the anchor locations
to also form a homogeneous PPP, with intensity λ. Due to
the stationarity of the PPP, it can be assumed without loss of
generality that a target is situated at the origin. A transmit power
constraint further restricts our attention to a circular region of
radius R, centered around the target, in which anchors must lie
for it to be localized. From the target’s perspective, the shadow
regions induced by the obstacles form a germ-grain model (Fig.
1), where the area of a grain depends on how far its germ (i.e.,
the corresponding obstacle mid-point) is from the origin. The
blocked anchors are those that lie in the shadow region of an
obstacle. Let Av denote the area of the unshadowed region.

2For simplicity, we assume a monostatic configuration throughout this work,
where the anchors are transceivers. All results can easily be extended to the
multistatic case as well, with disjoint transmitter and receiver units.

Av is a random variable that depends entirely on L and λ0.
The target will be in a blind-spot if there are fewer than three
anchors in the unshadowed area. Hence, for anchor intensity λ,
the blind-spot probability, conditioned on Av , is given by:

g(Av;λ) = e−λAv

(
1 + λAv +

(λAv)
2

2

)
(1)

The unconditional blind-spot probability, b(λ), is given by the
expression

b(λ) =

πR2∫
0

g(Av;λ)f(Av)dAv = E[g(Av;λ)] (2)

where f(Av) is the distribution of the unshadowed area and
E[.] is the expectation operator. The distribution of Av , while
capturing the effect of correlated blocking, is not straightfor-
ward to characterize. Hence, simplified approaches need to be
developed with the hope of deriving tight bounds and approx-
imations. One of the simplest approaches is to approximate
b(λ) by g(E[Av];λ). In the next section, we show that this is
equivalent to assuming independent blocking. We also show
that this assumption underestimates the blind-spot probability
under certain conditions which typically hold true in most cases.
Thus, we propose a new approach to blind-spot probability
estimation based on the second-order statistics of Av .

III. BLIND-SPOT PROBABILITY

We define the visibility random variable v(r, φ) for the point
(r, φ) as follows:

v(r, φ) =

{
1, if (r, φ) is not blocked to the origin (target)
0, else

(3)

Av , along with its first and second moments, can then be
computed by the following expression:

Av =

∮
v(r, φ)rdrdφ (4)

E[Av] =

∮
E[v(r, φ)]rdrdφ

=

∮
P(v(r, φ) = 1)rdrdφ (5)

E[A2
v] =

∮ ∮
E[v(r1, φ1)v(r2, φ2)]r1dr1dφ1r2dr2dφ2

=

∮ ∮
P(v(r1, φ1) = 1; v(r2, φ2) = 1; )r1dr1dφ1

r2dr2dφ2 (6)
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where
∮

:=
∫ 2π

0

∫ R
0

and P(.) is the probability operator.
Using the Taylor series expansion about E[Av], (2) can be
approximated as follows:

b(λ) = E[g(E[Av] +Av − E[Av];λ)]

≈ E[g(E[Av];λ) + g′(E[Av];λ)(Av − E[Av])

+ (1/2)g′′(E[Av];λ)(Av − E[Av])
2]

= g(E[Av];λ) +
1

2
g′′(E[Av];λ)σ2

Av
(7)

where σ2
Av

is the variance of the unshadowed (visible) area and
g′(Av;λ) and g′′(Av;λ) are the first and second derivatives of
g(Av;λ) with respect to Av .

A. Independent Blocking

The unblocked anchors can be viewed as a point process
obtained by sampling3 the underlying PPP. For an anchor at
(r, φ), the sampling probability equals P(v(r, φ) = 1). Hence,
independent blocking is equivalent to an independent sampling
of the anchor PPP, with location-dependent sampling probabili-
ties. As a result, the unblocked anchors form an inhomogenous
PPP whose intensity is given by

λindep(r, φ) = λP(v(r, φ) = 1) (8)

The blind-spot probability over a circle of radius R is given by

bindep(λ) = e−Λ(R)

(
1 + Λ(R) +

Λ(R)2

2

)
= g(E[Av];λ) (9)

where Λ(R) =
∮
λindep(r, φ)rdrdφ = λE[Av] denotes the

average number of unblocked anchors over a circle of radius
R.
g′′(Av;λ) = (λ3/2)Ave

−λAv (λAv−2) ≥ 0 when λAv ≥ 2.
Thus, g(Av;λ) is convex in Av for Av ≥ 2/λ. By Jensen’s
inequality, b(λ) = E[g(Av;λ)] ≥ g(E[Av];λ) = bindep(λ) if
E[Av] > 2/λ. Since E[Av] depends on λ0 and L, bindep(λ)
is a lower bound for b(λ) over {(λ, λ0, L) : λE[Av] ≥ 2}.
From a design perspective, it is desirable to have at least three
unblocked anchors, on average (i.e. λE[Av] ≥ 3). Thus, in this
regime, it is necessary to take correlated blocking into account
to design a localization network that meets a desired blind-spot
probability threshold.

B. Second-order Statistics of Unshadowed Area

The LoS path to (r, φ) is unblocked if and only if there are no
obstacle mid-points in the set Sv(r, φ) = {(ρ, ω) : ρ tan |ω −
φ| ≤ L/2, ρ sec |ω − φ| ≤ r}, as shown in Fig. 2. Hence,

P(v(r, φ) = 1) = e−λ0ν2(Sv(r,φ)) (10)

ν2(Sv(r, φ)) = 2

r∫
0

ρmin(arctan(L/(2ρ)), arccos(ρ/r))dρ

(11)

3Equivalently, the blocked anchors can be viewed as a thinning of the anchor
PPP

Fig. 2: For (r, φ) = (5, 0), the LoS path to the origin is
unblocked if and only if there is no obstacle mid-point in the
blue-region.

where ν2(.) denotes the area measure. The average unshadowed
area can be computed numerically from (5), (10) and (11).
Similarly,

P(v(r1, φ1) = 1; v(r2, φ2) = 1) = e−λ0ν2(Sv(r1,φ1)∪Sv(r2,φ2))

(12)

which depends on the extent of overlap between the sets
Sv(r1, φ1) and Sv(r2, φ2). The most straightforward case of
correlated blocking occurs when the two points lie behind one
another, i.e., φ1 = φ2 = φ. In this case,

P(v(r1, φ) = 1; v(r2, φ) = 1) = P(v(max(r1, r2), φ) = 1)

= P(c)(r1, r2) (13)

In general, the overlapping region is difficult to compute.
Hence, we approximate the joint probability in (12) (i.e.,
correlated blocking) using a mixture of P(c)(r1, r2) and the
independent blocking distribution. Therefore,

P(v(r1, φ1) = 1; v(r2, φ2) = 1) ≈ (1− α(φ1, φ2))P(c)(r1, r2)

+ α(φ1, φ2)P(v(r1, φ1) = 1)P(v(r2, φ2) = 1) (14)

where α(φ1, φ2) = min(|φ1 − φ2|, 2π − |φ1 − φ2|)/π is
the mixing coefficient. α(φ1, φ2) = 0 when |φ1 − φ2| = 0
(maximum blocking correlation) and α(φ1, φ2) = 1 when
|φ1 − φ2| = π (independent blocking). A linear relationship
for α as a function of |φ1 − φ2| is assumed for the sake of
simplicity.
E[A2

v] can be computed numerically from (13) and (14).
Below, we present our numerical results.

C. Numerical results and Discussion

We assume R = 10m throughout. The impact of correlated
blocking is shown in Fig. 3, where we consider two different
anchor deployments for fixed L and λ0 (i.e. constant E[Av]). In
the ‘circle’ scenario, the anchors are distributed with intensity
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Fig. 3: The impact of correlated blocking is especially signifi-
cant when the anchors do not have a large angular spread.

Fig. 4: Larger obstacles induce greater blocking correlation, as
a result of which the gap between the two curves increases with
L

λ over a circle of radius R, whereas in the ‘quadrant’ case, the
anchors locations are restricted to a quadrant with intensity 4λ.
Thus, in both cases, the average number of unblocked anchors
is the same and hence, the independent blocking assumption
provides the same result. However, the blind-spot probability
for the ’quadrant’ scenario is higher since the anchors experi-
ence highly correlated blocking due to their restricted angular
spread.

For fixed λ and λ0, the effect of obstacle length on blocking
is shown in Fig 4, where it can be seen that the true blind-spot
probability (labelled ‘ground truth’) is higher than that obtained
by assuming independent blocking. As expected, the blind-spot
probability increases monotonically in L for both cases.

Fig. 5: The mixture distribution overestimates the variance of
the unshadowed area.

For L = 5m and an average of four obstacles, the perfor-
mance of the Taylor series approximation in (7) is plotted in
Fig. 5. The following observations can be made:

i) As the anchor intensity increases, the blind-spot proba-
bility approaches the value obtained by assuming inde-
pendent blocking. This is intuitive as it is more likely to
obtain at least three unblocked anchors from directions
that exhibit weak mutual blocking correlation.

ii) The mixture distribution overestimates the variance of
the unshadowed area and consequently, the blind-spot
probability because it is only equivalent to independent
blocking when the two points are on diametrically opposite
ends of the target. In practice however, the independence
assumption is usually valid at a smaller angular separation,
depending on L and R. Refining the mixing coefficient,
α, to provide a better approximation to the blind-spot
probability is the subject of future work.

IV. SUMMARY

In this paper, we used techniques from stochastic geometry
to investigate the effect of obstacle-induced correlated blocking
on the blind-spot probability of a localization network. In
particular, we used a homogeneous PPP to model the anchor
locations and a germ-grain model to represent obstacle loca-
tions and shapes. Under these assumptions, the conditions under
which the blind-spot probability exceeded the value obtained
by assuming independent blocking were derived using Jensen’s
inequality. Furthermore, a mixture distribution was used to
approximate the variance of the unshadowed area, which was
then used to estimate the blind-spot probability using a Taylor
series expansion.
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